提出了一类具时滞与饱和发生率的HIV-1传染病模型,分析讨论了无病平衡点E0(T0,0,0)和正平衡点E+(T*,I*,V*)的全局稳定性。通过构造Lyapunov函数和La Salle不变集原理,证明了当dμ〉sγβ,对任意τ≥0,无病平衡点E0(T0,0,0)是全局渐近稳定的;
A HIV- 1 epidemic model with time delay and saturation incidence rate is proposed. The global stabilities of a disease-free equilibrium E0( T0,0,0) and a positive equilibrium E+( T*,I*,V*)are discussed. By constructing Lyapunov functions and La Salle's invariant principle,it is shown that if dμ sγβ,the disease-free equilibrium E0( T0,0,0) is globally asymptotically stable,and if dμ sγβ,the positive equilibrium E+( T*,I*,V*) is globally asymptotically stable,for all τ ≥ 0. Numerical simulations are carried out to illustrate the theoretical results.