位置:成果数据库 > 期刊 > 期刊详情页
应用S.L.Peng窄带分解与广义分形的自动机故障诊断
  • ISSN号:1674-5124
  • 期刊名称:《中国测试》
  • 时间:0
  • 分类:TP301.1[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中北大学机械与动力工程学院,山西太原030051, [2]中北大学系统辨识与诊断技术研究所,山西太原030051
  • 相关基金:国家自然科学基金(51175480)
中文摘要:

针对某型高射机枪自动机振动信号低信噪比、干扰多的特点,提出利用S.L.Peng的局部窄带分解理论对信号进行分解和重构,并用支持向量机对故障模式进行识别。通过对自动机故障机理分析,找到易发生故障的位置,并设置3种故障后进行振动信号采集。将信号通过基于局部窄带信号的分解和重构后通过广义维数计算获得各种工况的盒维数、信息维数、关联维数、广义分形维数谱均值,将其供给支持向量机进行故障分类。所得诊断结果准确率达93.75%,具有一定的参考及实用价值。

英文摘要:

As the vibration signals of a certain type of antiaircraft gun automatons are featured by low signal-to-noise ratio(SNR) and multi-disturbances, a S.L.Peng-based local narrow-band decomposition method has been proposed to decompose and reconstruct the signals. Particularly, a support vector machine (SVM) has been used to identify the failure mode. First, the failure mechanism of the automaton was analyzed to find the location prone to failures and the vibration signals were collected after three kinds of failures were set. Second, the signals were decomposed and reconstructed by means of local narrow-band signal decomposition. Third, the box dimension, information dimension, correlation dimension, and the mean average of generalized fractal dimension spectrum were obtained and put into the SVM to classify the failure. The accuracy rate of the diagnosis is as high as 93.75%, which proves that this method has some reference and practical value.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国测试》
  • 北大核心期刊(2011版)
  • 主管单位:中国测试技术研究院
  • 主办单位:中国测试技术研究院
  • 主编:杨杰斌
  • 地址:成都市成华区玉双路10号
  • 邮编:610021
  • 邮箱:zgcs8440@163.com
  • 电话:028-84404872 84403677
  • 国际标准刊号:ISSN:1674-5124
  • 国内统一刊号:ISSN:51-1714/TB
  • 邮发代号:62-260
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:2805