建议那 1, ... , n 是在 L 2 的可测量的功能() 。我们叫n元组( 1 ,..., n )长度 n 的 Parseval 超级框架小浪如果$\left\{{ 2 ^{ \tfrac { k }{ 2 }} \eta _1 \left ({ 2 ^ k t - \ell } \right ) \oplus \cdots \oplus 2 ^{ \tfrac { k }{ 2 }} \eta _n \left ({ 2 ^ k t - \ell } \right ): k , \ell \in \mathbb { Z }}\right\}$\left\{{ 2 ^{ \tfrac { k }{ 2 }} \eta _1 \left ({ 2 ^ k t - \ell } \right ) \oplus \cdots \oplus 2 ^{ \tfrac { k }{ 2 }} \eta _n \left ({ 2 ^ k t - \ell } \right ): k , \ell \in \mathbb { Z }}\right\}
Suppose that η1,...,η_n are measurable functions in L2(R).We call the n-tuple(η1,...,ηn) a Parseval super frame wavelet of length n if {2~(k/2) η1(2~kt-l) ⊕···⊕2~(k/2) ηn(2kt-l):k,l∈Z} is a Parseval frame for L2(R)⊕n.In high dimensional case,there exists a similar notion of Parseval super frame wavelet with some expansive dilation matrix.In this paper,we will study the Parseval super frame wavelets of length n,and will focus on the path-connectedness of the set of all s-elementary Parseval super frame wavelets in one-dimensional and high dimensional cases.We will prove the corresponding path-connectedness theorems.