基于通量重构形式的高阶算法,能够以统一的形式表述间断Galerkin法、谱体积法以及谱差分法等Godunov类高阶精度算法,具有形式简单、灵活性高等特点。高阶精度Laplace型人工黏性被用于激波计算,二维无黏算例至三阶精度的求解结果进行了对比,结果表明该型人工黏性方法位置捕捉准确,能保持算法本身高阶精度的性质,在使用三阶精度计算时激波能被精准地定位在1/2个网格之内,本文对对流通量散度的处理能保证守恒性的同时有效地阻尼混淆误差。
High order flux-reconstruction method is faster, simpler, flexible and can uniform several Godunov-type high order method such as discontinuous Galerkin method, spectral volume and spectral difference method using same formulation. High order Laplacian type artificial viscosity is presented in this paper for shock-capturing. Results up to third order show that this kind of artificial viscosity can capture shock into sub-cell and keep high order property, our implement can damp aliasing error efiSciently and keep conservation respectively.