位置:成果数据库 > 期刊 > 期刊详情页
基于图形处理器的数据流快速聚类
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京工业大学计算机学院、北京市多媒体与智能软件重点实验室,北京100022
  • 相关基金:国家自然科学基金重大项目(No.60496322,60496327)
中文摘要:

在数据流中挖掘频繁项集得到了广泛的研究,传统的研究方法大多关注于在数据流中挖掘全部频繁项集.由于挖掘全部频繁项集存在数据和模式冗余问题,所以对算法的时间和空间效率都具有更大的挑战性.因此,近年来人们开始关注在数据流中挖掘频繁闭项集,其中一个典型的工作就是Moment算法.本文提出了一种数据流中频繁闭项集的近似挖掘算法A-Moment.它采用衰减窗口机制、近似计数估计方法和分布式更新信息策略来解决Moment算法中过度依赖于窗口和执行效率低等问题.实验表明,该算法在保证挖掘精度的前提下,可以比Moment获得更好的效率.

英文摘要:

Mining frequent itemsets from data streams has extensively been studied, and most of them focus on finding complete set of frequent itemsets in a data stream. Because of numerous redundant data and patterns in main memory, they cannot get very good performance in time and space. Therefore,mining frequent closed itemsets in data streams becomes a new important problem in recent years, where algorithm Moment was regarded as a typical method of them. This paper presents an algorithm, called AMoment, which uses the damped window technique, approximate count method and distributed updating strategy to get higher mining efficiency. Experimental results show that our algorithm performs much better than the previous approaches.

同期刊论文项目
期刊论文 134 会议论文 68 著作 2
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609