利用不完全双二次元Q2-和一阶BDFM元,对拟线性黏弹性方程构造了一个新的H1-Galerkin混合元模式。通过Bramble-Hilbert引理,证明了单元所对应的插值算子一个新的高精度结果。进一步地,在半离散和一个二阶全离散格式下,分别导出了原始变量u在H1-模和中间变量珗p在H(div)-模意义下的超逼近性质。
A new H 1-Galerkin mixed finite element pattern for quasi-linear viscoelasticity equation is constructed using incomplete biquadratic element Q2-and first order BDFM element.Through Bramble-Hilbert lemma,a newhigh preci-sion results of interpolation operators corresponding to unit are proved.Further,the superclose properties for the primi-tive variables u in H1-norm and the intermediate variable p in H(div)-norm are obtained respectively in semi-discrete and fully discrete schemes.