对一类拟线性伪双曲型积分-微分方程构造了一个低阶混合元(Q11+Q01×Q10)格式,直接利用单元插值的性质、平均值技巧和导数转移技巧,导出了半离散格式的超逼近性质,同时利用插值后处理技术,导出了相应的O(h^2)阶整体超收敛结果,并通过构造一个合适的外推格式得到了O(h^3)阶的外推解.
In this paper,a low order mixed finite element(Q11+Q01×Q10)formulation is constructed for the quasilinear integro-differential equations of pseudo-hyperbolic type.By utilizing the properties of the interpolation on the two element,mean-value and derivative delivery techniques,the corresponding superclose nature is obtained for semi-discrete scheme.At the same time,the O(h^2)order global superconvergence result is obtained by use of a postprocessing technique,and the extrapolation solution with order O(h^3)is derived by a suitable extrapolation scheme.