(A)n∈N+,设n=n=p1^a1P2^a1…pk^ak为n的标准素因数分解式,如果对于m=p1^β1P2^β2 …pr^βr有βi|αi (I=1,2,...,k),则称m为n的e-因子.令de(n)表示n的所有e-因子的个数.研究了k-full数集合上函数de(n)的均值性质,并得到了一个有趣的渐近公式.
Let n〉1 be an integer, and n=p1^a1P2^a1…pk^ak is it's prime factorization. A number m=p1^β1P2^β2 …pr^βr. is called an e-divisor of n if βi{ai with i=1,2,…,k. Note d, (n) is the number of all e-divisor of n, By using the analytic methods , the mean value properties of the e-divisor function on the set of k-full numbers are studied, and an interesting asymptotic formula is given.