设整数q〉2,c与q互素.对于1到q之间与q互素的任意整数a,在1到q之间存在唯一的整数b满足ab三crood q.对任意整数k≥2,定义M(q,k,c)为满足1≤ai≤q,(ai,q)=1,i=1,2,…,k,a1a2…ak≡c mod q且2+a1+a2+…+ak的正整数组(a1,a2,…,ak)的数目,并设E(q,k,c)=M(q,k,c)- Ф^(k-1)(q)/2.本文的主要目的是利用Gauss和与原特征的性质,以及Dirichlet L-函数的均值定理,来研究E(q,k,c)与超级Kloosterman和K(h,k,q)的混合均值,并给出一个均值公式.
Let q 〉 2 and c be two integers with (e,q) = 1. For each integer a with 1 ≤ a ≤ q and (a,q) = 1, there exists one and only one b with 1≤ b ≤ q such that ab ≡cmodq. For any integer k ≥ 2, let M(q, k,c) be the number of all k-tuples with positive integer coordinates (a1, a2,… , ak ) such that 1 ≤ ai ≤q, (ai, q) = 1, a1 a2 … ak ≡ c mod q and 2 + a1 + a2 +… + ak, and E(q, k, c) = M(q, k, c) - Ф^(k-1)(q)/2. The main purpose of this paper is to study the hybrid mean value of E(q, k, c) and the hyper-Kloosterman sums K(h, k, q), and give an interesting mean value formula, by using the properties of Gauss sums, primitive characters and the mean value theorems of Dirichlet L-functions.