位置:成果数据库 > 期刊 > 期刊详情页
移动机器人滑动参数定界及鲁棒镇定控制
  • ISSN号:1000-8152
  • 期刊名称:控制理论与应用
  • 时间:2013.5.5
  • 页码:611-617
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京理工大学机械工程学院,江苏南京210094, [2]常州信息职业技术学院电子与电气工程学院,江苏常州213164, [3]东南大学自动化学院,江苏南京210096
  • 相关基金:国家自然科学基金资助项目(61105094).
  • 相关项目:基于集理论的野外移动机器人地形环境建模和定位方法研究
中文摘要:

针对常规场景识别方法在室内环境中性能显著下降的问题,提出一种融合全局及显著性区域特征的移动机器人室内场景识别方法.利用改进的BoW(bag-of-words)模型进行室内场景判别的同时,结合视觉注意方法提取出场景图像的最大及次大显著区域,送入改进的BDBN(bilinear deep belief network)模型来自动学习图像特征,进行类别判断.利用分段判别策略对于两个模型的结果进行融合,并输出最终场景判别结果.将本方法应用于实际机器人平台及包含67个类别的MIT室内场景数据库,实验结果表明,相较于常规BoW模型,本方法可以有效提高识别准确率10%以上.此外,本方法在MIT数据库中达到平均44.3%的准确率,优于相关文献算法.

英文摘要:

Conventional scene recognition methods have poor performance in indoor situations. For this reason, an indoor scene recognition method for mobile robots is presented, combining global and saliency region features. In addition to the use of an improved BoW (Bag-of-Words) model for indoor scene recognition, an improved BDBN (bilinear deep belief network) model is implemented, using information from a salient region detection technique. The first and the second winners of the salient region detection with the visual attention approach are sent into the improved BDBN model to automatically learn image features and to judge the class sets they belong to. The final result of the indoor scene recognition can be obtained by combining the above-mentioned two models through strategies for a piecewise discriminant. The method is applied to the real mobile robot platform and the standard MIT 67-category indoor scene dataset. The experiments show that the proposed method is highly effective, and can improve the accuracy of common BoW-based methods by up to 10%. In addition, the accuracy rate of the method can reach 44.3%in the MIT dataset, which is superior to some methods in the literature.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制理论与应用》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:华南理工大学 中国科学院数学与系统科学研究院
  • 主编:胡跃明
  • 地址:广州五山路华南理工大学3号楼516室
  • 邮编:510640
  • 邮箱:aukzllyy@scut.edu.cn
  • 电话:020-87111464
  • 国际标准刊号:ISSN:1000-8152
  • 国内统一刊号:ISSN:44-1240/TP
  • 邮发代号:46-11
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:21084