在 optoelectronic 应用利用合成器官的分子的指数的生长为对材料的激动的状态的合理控制提出强壮的要求。通过分子的设计的激动的状态的操作与悦耳的排放颜色,高量效率和有效精力 / 费用转移进程导致了高效的 optoelectronic 设备的开发。最近,在一生调节激动的状态的重要突破被做了;完全器官的分子被发现与光一生在周围的条件下面有生活 ultralong 的激动的状态直到 1.35 年代,它比常规器官的 fluorophores 的那些长几个数量级。在理解在器官的光材料调节的激动的状态的基本行为给概念的进展,器官的 ultralong 房间温度磷光(OURTP ) 的调查应该为研究提供新方向并且在许多不同学科上有深刻影响。这里,我们总结了最近的理解在上调节的激动的状态,报导 OURTP 分子和他们的设计考虑,惊人 photophysical 表演,和最新出现的器官的 optoelectronic 材料的令人惊讶的 optoelectronic 应用那没有重金属。
The exponential growth of utilizing synthetic organic molecules in optoelectronic applications poses strong demands for rational control over the excited states of the materials. The manipulation of excited states through molecular design has led to the development of high-per- formance optoelectronic devices with tunable emission colors, high quantum efficiencies and efficient energy/ charge transfer processes. Recently, a significant break- through in lifetime tuning of excited states has been made; the purely organic molecules were found to have ultralong- lived excited state under ambient conditions with lumines- cence lifetimes up to 1.35 s, which are several orders of magnitude longer than those of conventional organic fluo- rophores. Given the conceptual advance in understanding the fundamental behavior of excited state tuning in organic luminescent materials, the investigations of organic ultra- long room-temperature phosphorescence (OURTP) should provide new directions for researches and have profound impacts on many different disciplines. Here, we summarized the recent understandings on the excited state tuning, the reported OURTP molecules and their design considerations,the spectacular photophysical performance, and the amazing optoelectronic applications of the newly emerged organic optoelectronic materials that free of heavy metals.