位置:成果数据库 > 期刊 > 期刊详情页
一种兼容AHB总线的NorFlash控制器IP设计
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TH165.3[机械工程—机械制造及自动化] Q959.468[生物学—动物学]
  • 作者机构:[1]Biomedical Engineering Program, Sun Yat-sen University, Guangzhou 510006, China, [2]Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China, [3]The Shenzhen Key Laboratory for Low-cost Healthcare, Shenzhen 518055, China
  • 相关基金:Project(2012M510207) supported by the China Postdoctoral Science Foundation; Projects(60932001, 61072031) supported by the National Natural Science Foundation of China; Project(2012AA02A604) supported by the National High Technology Research and Development Program of China; Project (2013ZX03005013) supported by the Next Generation Communication Technology Major Project of National Science and Technology, China; Project supported by the "One-hundred Talent" and the "Low-cost Healthcare" Programs of Chinese Academy of Sciences
中文摘要:

Respiratory monitoring is increasingly used in clinical and healthcare practices to diagnose chronic cardio-pulmonary functional diseases during various routine activities.Wearable medical devices have realized the possibilities of ubiquitous respiratory monitoring,however,relatively little attention is paid to accuracy and reliability.In previous study,a wearable respiration biofeedback system was designed.In this work,three kinds of signals were mixed to extract respiratory rate,i.e.,respiration inductive plethysmography(RIP),3D-acceleration and ECG.In-situ experiments with twelve subjects indicate that the method significantly improves the accuracy and reliability over a dynamic range of respiration rate.It is possible to derive respiration rate from three signals within mean absolute percentage error 4.37%of a reference gold standard.Similarly studies derive respiratory rate from single-lead ECG within mean absolute percentage error 17%of a reference gold standard.

英文摘要:

Respiratory monitoring is increasingly used in clinical and healthcare practices to diagnose chronic cardio-pulmonary functional diseases during various routine activities.Wearable medical devices have realized the possibilities of ubiquitous respiratory monitoring,however,relatively little attention is paid to accuracy and reliability.In previous study,a wearable respiration biofeedback system was designed.In this work,three kinds of signals were mixed to extract respiratory rate,i.e.,respiration inductive plethysmography (RIP),3D-acceleration and ECG.In-situ experiments with twelve subjects indicate that the method significantly improves the accuracy and reliability over a dynamic range of respiration rate.It is possible to derive respiration rate from three signals within mean absolute percentage error 4.37% of a reference gold standard.Similarly studies derive respiratory rate from single-lead ECG within mean absolute percentage error 17% of a reference gold standard.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909