位置:成果数据库 > 期刊 > 期刊详情页
基于知识粒度的高属性维稀疏聚类算法
  • 期刊名称:华南理工大学学报,(2010-07),Vol. 38,No.7,pp.20-26
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华南理工大学计算机科学与工程学院,广东广州510006
  • 相关基金:国家自然科学基金委员会与中国民用航空总局联合资助项目(60776816); 广东省自然科学基金重点资助项目(8251064101000005); 广东省科技计划项目(2007B060401007); 广东工业大学青年基金项目(072058); 广东高校优秀青年创新人才培养计划(育苗工程)项目(100070)
  • 相关项目:用于机场安全管理与预防恐怖犯罪的身份识别方法研究与实现
中文摘要:

目前的高属性维稀疏数据算法大多面向二态数据,而且没有聚类结果的评价方法,给应用带来很大局限.针对这些问题,文中提出了一种基于知识粒度的高属性维聚类算法.首先通过设计面向数据稀疏特征的半模糊聚类算法对数据进行离散化,并基于此给出稀疏相似度和初始等价关系的定义;然后设计可变精度的二次聚类模型对初始聚类结果进行修正,使算法具有较强的抗噪声能力;最后结合应用领域定义一种新的聚类质量评价模型.实验证明,该算法可提供多粒度分析结果,准确度更高,得到的聚类结果能真实反映数据的特征.

英文摘要:

Most existing high-attribute dimensional sparse clustering algorithms can only process binary data and are insufficient in evaluating clustering results,which limits their applications. In order to solve this problem,a noval high-attribute dimensional sparse clustering algorithm based on knowledge granularity is proposed. In this algorithm,first,a semi-fuzzy clustering algorithm is persented to discretize sparse data,with which the sparse similarity and the initial equivalence relation are defined. Then,a precision-variable quadratic clustering model is established to refine the results and further to improve the noise resistance of the proposed algorithm. Finally,an applicationoriented evaluation model of clustering quantity is defined. Test results show that the proposed algorithm is suitable for various granularities and helps to obtain high-accuracy of results of reflecting data characteristics.

同期刊论文项目
同项目期刊论文