位置:成果数据库 > 期刊 > 期刊详情页
基于改进蜂群算法优化神经网络的玉米病害图像分割
  • ISSN号:1002-6819
  • 期刊名称:农业工程学报
  • 时间:2013.7
  • 页码:142-149
  • 分类:S126[农业科学—农业基础科学] TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]吉林农业大学信息技术学院,长春130118, [2]吉林大学计算机科学与技术学院符号计算与知识工程教育部重点实验室,长春130012
  • 相关基金:国家自然科学基金(61133011,61170092,60973088); 吉林大学科学前沿与交叉学科创新基金(200903178); 吉林农业大学科研启动基金青年基金(201237)
  • 相关项目:动态时空推理研究
中文摘要:

更加细致的体现病害外部形态特征和较为完好的保留病害区域颜色纹理信息,是玉米等作物病害分割的关键性研究问题之一。该文提出一种基于改进人工蜂群算法的脉冲耦合神经网络图像分割算法,该算法以最大香农熵和最小交叉熵加权线性组合作为蜂群算法收益度评价函数,通过引入尺度因子调整引领蜂和跟随蜂的解搜索策略,改进后人工蜂群算法与脉冲耦合神经网络相结合,实现网络参数的自动优化调节。在RGB色彩子空间上将该算法用于一组玉米常见病害彩色图像分割,并借鉴利用彩色图像合并策略得到最终病害分割结果。试验表明,该文算法较为细致的体现病害外部形态特征,较为完好的保留了颜色纹理信息;利用分割区域色度误分度V(I)值作为评判标准,该文算法V(I)幅值顺次降低2.03%、7.05%、10.15%和11.2%,综合降低了7.32%也优于对比算法。因此,该文算法为病害彩色图像分割提供了一种较为有效的方法。

英文摘要:

The image segmentation of crop diseases is one of the critical technical aspects of digital image processing technology for disease recognition. However, because of background information complexity of crop disease images, boundary area vagueness and noise effect of light and vein texture, there is no robust easy and practical method. At the same time, the color texture feature is one of the important criteria for identifying diseases, but there are serious influences on feature extraction and disease recognition because of the color texture information ignorance of most of the methods at present. The main contribution of this paper is that the segmentation appearance is more subtle and the color texture information is better when kept in the target area of crop diseases based on the proposed method a pulse coupled neural network based on a modified artificial bee algorithm (MABC-PCNN). The basic idea of the color disease image segmentation is that the method of MABC-PCNN was used to segment the disease regions in RGB subspaces, then the results in three subspaces were merged in reference to a selective large probability merge strategy, and finally the final merger result was obtained. The concrete realization is as follows. Firstly, a method of MABC-OCNN was proposed in this paper, and in this method the parameters of PCNN (fl is the linking strength, Vo is an amplitude coefficient and ao is a an incentive pulse attenuation coefficient, Ve and ao set the operation of neuromine) were automatically optimized through an improved ABC (MABC). In more detail, the above mentioned coefficient was described as the components of the feasible solution corresponding to the nectar source. By introducing scale adjustment factor , the solution search strategy of leader and follower had been adjusted, then through the evaluation principle of a weighted linear combination of maximum Shannon entropy and minimum cross-entropy, the results of segmentation with PCNN were evaluated and in the iteration of MABC, the optima

同期刊论文项目
期刊论文 80 会议论文 27 专利 1
期刊论文 99 会议论文 6
同项目期刊论文
期刊信息
  • 《农业工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业工程学会
  • 主编:朱明
  • 地址:北京朝阳区麦子店街41号
  • 邮编:100125
  • 邮箱:tcsae@tcsae.org
  • 电话:010-59197076 59197077 59197078
  • 国际标准刊号:ISSN:1002-6819
  • 国内统一刊号:ISSN:11-2047/S
  • 邮发代号:18-57
  • 获奖情况:
  • 百种中国杰出学术期刊,中国精品科技期刊,中国科协精品科技期刊工程项目期刊,RCCSE中国权威学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:93231