位置:成果数据库 > 期刊 > 期刊详情页
混沌野草扩展Kalman滤波器辨识六维力传感器下E膜模型参数
  • ISSN号:1004-132X
  • 期刊名称:中国机械工程
  • 时间:2015.4
  • 页码:878-885
  • 分类:TH73[机械工程—仪器科学与技术;机械工程—精密仪器及机械]
  • 作者机构:[1]安徽工程大学,芜湖241000
  • 相关基金:基金项目:国家自然科学基金资助项目(51175001);安徽省自然科学基金资助项目(11040606M144)
  • 相关项目:电阻应变片式六维力传感器动态耦合特性研究
中文摘要:

为解决动载环境下噪声污染导致六维力传感器测量精度急剧下降,以及扩展卡尔曼滤波器难以获得最优系统干扰矩阵的问题,提出了一种基于混沌野草算法优化的扩展卡尔曼滤波(CIW0-EKF)算法。根据挠度与应变之间的关系,构建了六维力传感器下E膜非线性模型。基于野草繁殖算法,以前6阶主振型信息构成的系统干扰阵为均值进行高斯采样,产生初始化的可行解。将混沌搜索技术与野草算法相融合,利用野草算法进行全局搜索,通过混沌序列对群体中适应度高于平均值的个体执行给定步数的局部搜索,指导种群向最优解方向逼近,避免搜索过程陷入局部最优。采用改进的野草算法对扩展Kalman滤波中的系统干扰矩阵进行优化处理。仿真实例表明,改进扩展卡尔曼滤波器在提高六维力传感器测量精度的同时,可以保持较好的稳定性和鲁棒性。

英文摘要:

The measurement accuracy of a sensor which worked on the environment of the dynam- ic load could be seriously affected by the pollution of noise signals and the EKF could not gain the op- timal system noise matrix. A new EKF based on CIWO was proposed. The nonlinear state-space model was established based on the relationship between the deflection and the strain. The idea of the grass breeding was introduced to achieve the Gauss sampling of system interference matrix consisted of first six-order vibration mode informations and to produce the initial feasible solutions. After com- bining chaotic search technology with invasive weed optimization (IWO), the global search of the new algorithm was executed by the IWO. Then the chaotic sequences executed the local search to the indi- vidual which had the higher fitness value than average and guided the population approaching to the optimal solution. The search process can be avoided to fall into local optimum. Finally, the improved invasive weed optimization algorithm was introduced to optimize the system's noise matrix in EKF. The simulation results indicate that the new algorithm can enhance the measurement accuracy of six- axis force sensor effectively and maintain better robustness and real-time performance.

同期刊论文项目
期刊论文 47 会议论文 8 专利 2 著作 1
同项目期刊论文
期刊信息
  • 《中国机械工程》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:董仕节
  • 地址:湖北工业大学772信箱
  • 邮编:430068
  • 邮箱:paper@cmemo.org.cn
  • 电话:027-87646802
  • 国际标准刊号:ISSN:1004-132X
  • 国内统一刊号:ISSN:42-1294/TH
  • 邮发代号:38-10
  • 获奖情况:
  • 1997年获中国科协期刊一等奖,第二届全国优秀科技...,机械行业优秀期刊一等奖,1999年获首届国家期刊奖,2001年获首届湖北十大名刊,中国期刊方阵“双高”期刊,2003第二届国家期刊奖提名奖,百种中国杰出学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:50788