位置:成果数据库 > 期刊 > 期刊详情页
基于Copula熵的神经网络径流预报模型预报因子选择
  • ISSN号:1003-1243
  • 期刊名称:《水力发电学报》
  • 时间:0
  • 分类:TV213[水利工程—水文学及水资源]
  • 作者机构:[1]华中科技大学水电与数字化工程学院,武汉430074, [2]武汉大学水资源与水电工程科学国家重点实验室,武汉430072, [3]三峡梯调通信中心,湖北宜昌443133
  • 相关基金:国家自然科学基金项目(51309104,51239004); 湖北省自然科学基金(2013CFB184); 武汉市科技计划项目(2014060101010064)
中文摘要:

采用神经网络进行水文预报的关键问题之一是预报因子(输入变量)的选择,目前国内尚缺有效、系统的理论方法,国外主要是采用偏互信息(Patial mutual information,PMI)法。本文针对偏互信息计算方法的缺陷,引入Copula熵的概念,推导Copula熵与互信息的关系,提出采用Copula熵计算PMI;并借助模拟试验检验了所提方法的合理性;最后,将该方法应用到三峡水库的水文预报中,并与现行方法进行了比较分析。结果表明,本文所提方法不仅具有理论基础,而且结果合理可信。

英文摘要:

One of the key steps in artificial neural networks (ANN) forecasting is the determination of significant input variables. A partial mutual information (PMI) method was used to characterize the dependence of a potential model between its input and output variables. We also developed a copula entropy method for effective calculation of mutual information (MI) and PMI, and verified its accuracy and performance using numerical tests. This forecasting technique has been applied to a real-world case study of the Three Gorges reservoir (TGR), and results show that the proposed method is useful and effective for identification of suitable inputs of flood forecasting model.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《水力发电学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国水力发电工程学会
  • 主编:李庆斌
  • 地址:北京清华大学新水利馆211室
  • 邮编:100084
  • 邮箱:
  • 电话:010-62783813
  • 国际标准刊号:ISSN:1003-1243
  • 国内统一刊号:ISSN:11-2241/TV
  • 邮发代号:
  • 获奖情况:
  • 优秀学术期刊三等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12057