设θ(t)是连续模,T是带有θ型Calderón-Zygmund核的奇异积分算子。若w∈Ap,1〈p〈∞,利用外推原理和空间分解理论,我们得到了T在加权Morrey空间上的有界性,即T是L^p,k(w)到L^p,k(w)有界的。
Let θ(t) be a modulus of continuity.Suppose T is a singular integral operator with θ-type Calderón-Zygmund kernel.If w Ap,1p$,by using the extrapolation theory and decomposition of space,we obtain that the operator T is bounded in weighted Morrey space.That is,T is bounded from Lp,,κ(w) to Lp,κ(w).