在有界区间上带阻尼项的等熵可压缩欧拉方程组的初边值问题,利用方程组和边界条件得到关于解的高阶导数的边界条件。当初始数据在常状态平衡解附近的小扰动且满足边界的匹配条件时,运用能量估计的方法,证明该初值问题的经典解整体存在且唯一。
We study the initial-boundary value problem for the isentropic Euler equations with damping in a bounded interval. If the initial data is a small perturbation around a constant equilibrium solution and satisfies the compatible condition, we prove that the classical solution of this problem exists uniquely and globally by the method of energy estimation.