无线传感网中的数据融合技术是降低节点通信量的最为有效的方式之一,而隐私保护是用户数据安全性的要求,有效的数据融合隐私保护算法是无线传感应用的重要研究方向。近年来,出现的一些基于数据分片混合的数据融合隐私保护算法,如SMART(Slicing—Mix—AggRegaTion),在分片数不小于3时可以有效保护数据的安全,但在分片交换阶段网络中数据包过多,数据包容易产生碰撞而丢失。文中提出了一种新的数据融合隐私保护算法LTPART,它在采用一种安全有效的密钥分配策略的基础上,利用新的数据分片算法,降低了安全通信时数据的通信量。在数据融合阶段,LTPART为每一层分配固定时间片和浮动时间片,来保证节点数据充分融合及融合的精确性。仿真实验表明,在有效保护数据隐私的前提下,LTPART要比SMART(-,=3)少Ⅳ(Ⅳ为网络中节点的数目)次节点间的通信。
Data aggregation mechanism in Wireless Sensor Networks (WSNs) is one of the most efficient methods of reducing data com- munication overhead. And privacy-preserving is the fundamental security requirement of the users' data. Efficient privacy-preserving ag- gregation algorithms play an important role in applications of the WSNs. In recent years some privacy-preserving aggregation algorithms based on the slicing in WSNs have been brought up, for instance SMART (Slice-Mix-AggRegaTion), which can efficiently protect the security of data when the number of the slices is not less than 3. But there are too many packets in the network during the slices-mixing, SMART suffers high packet loss ratio arising from the packet collision. In this paper, present a new private data aggregation schema called LTPART in WSNs. Based on a secured and efficient key allocation policy,LTPART reduces data communication overhead with a new data slicing algorithm when the security can be ensured. In the period of data aggregation ,LTPART allocates fixed and floating time slices for each layer to ensure the completion and accuracy of data aggregation of sensor nodes. The simulation result shows that LTPART costs N ( N is the number of nodes in the network) less than SMART ( J= 3 ) in terms of communication under the premise of efficient protec- tion of data privacy.