位置:成果数据库 > 期刊 > 期刊详情页
混合高斯模型的自适应前景提取
  • ISSN号:1006-8961
  • 期刊名称:《中国图象图形学报》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京邮电大学计算机学院,南京210003
  • 相关基金:国家重点基础研究发展规划项目(2011CB302903);国家自然科学基金项目(61272084,61202004);江苏省高校自然科学研究重大项目(11KJA520002);江苏省科技支撑计划(社会发展)项目(BE2011826);高等学校博士学科点专项科研基金资助课题(20113223110003,20093223120001);中国博士后科学基金资助项目(2011M500095)
中文摘要:

复杂场景下的运动前景提取是计算机视觉研究领域的研究重点。为解决复杂场景中的前景目标提取问题,提出一种应用于复杂变化场景中的基于混合高斯模型的自适应前景提取方法。该方法可以对视频帧中每个像素的高斯分布数进行动态控制,并且通过在线期望最大化(EM)算法对高斯分布的各参数进行学习,此外每个像素的权值更新速率可根据策略进行调整。实验结果表明,该方法对复杂变化场景具有较好的适应性,可有效、快速地提取前景目标,提取结果具有较好的查准率和查全率。

英文摘要:

Foreground detection is a significant step of information acquisition in intelligent surveillance. The task is to segment all the moving objects from complex scenes without any false targets and noise interference. This step is a premise of the following steps: object identification, object tracking and behavioral analysis. Due to non-stationary surveillance scenes, foreground extraction becomes a complex task with many challenges. The performance of foreground detection mainly depends on the background modeling algorithm. In order to solve this problem, an adaptive background modeling approach is proposed. This approach is based on a Gaussian mixture model proposed by Stauffer and Grimson. In their approach, each pixel maintains a Gaussian mixture model constituted by K Gaussians. Then each Gaussian mixture model is updated by new observe pixel value. However the strategies of updating have some limits, such as fixed Gaussian number, fixed parameters, and fixed learning rate. The proposed approach optimizes updating strategies so as to break these limits. In this approach, each pixel maintains a dynamic Gaussian mixture model, while the number of Gaussians can be controlled dynamically. Further more, an online EM algorithm is applied to the method for estimating the parameters in Gaussian mixture model. At last, several strategies are proposed to control the learning rate of weights. Experimental results show that the foreground object detection approach has good adaptability to complex environments. The foreground object can be detected effectively and rapidly, and the precision and recall ratio of results demonstrate superiority of the method to some related work.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数码影像》
  • 主管单位:
  • 主办单位:中国图象图形学学会 中科院遥感所 北京应用物理与计算数学研究所
  • 主编:
  • 地址:北京市海淀区花园路6号
  • 邮编:100088
  • 邮箱:
  • 电话:010-86211360 62378784
  • 国际标准刊号:ISSN:1006-8961
  • 国内统一刊号:ISSN:11-3758/TB
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:0