位置:成果数据库 > 期刊 > 期刊详情页
基于GA—BPNN的巷道围岩变形模量预测
  • ISSN号:1001-1250
  • 期刊名称:《金属矿山》
  • 时间:0
  • 分类:TP212[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]武汉理工大学资源与环境工程学院, [2]平顶山工业职业技术学院计算机系
  • 相关基金:国家高技术研究发展计划(863计划)项目(编号:2009AA12201),平顶山市科技创新人才计划项目(编号:2012061).
中文摘要:

研究了遗传算法(GA)在设计和优化BPNN结构时的效能和它在预测岩体变形模量的应用,利用GA找到隐藏层神经元的最优数量以及隐含与输出层的学习因子和动量因子,然后和试错过程进行比较。采用了来源于实际巷道测量的76组数据集验证该方法。利用MSE,MAE,R等性能标准,证明GA—BPNN模型在岩体变形模量预测方面优于BPNN试错模型。

英文摘要:

The effectiveness of the genetic algorithm (GA) in the design and BPNN structure optimization and its ap- plication in the prediction of rock mass deformation modulus was researched. GA is used to find out the optimal number of neurons in the hidden layer and learning factor and momentum factor of the hidden layer and output layer, and then com- pared with the trial-and-error process. 76 groups of data sets derived from the actual roadway were used to validate this method. With performance criteria such as MSE, MAE and R,it is proved that GA-BPNN model is better than BPNN trial- and-error model in the prediction of rock mass deformation modulus.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《金属矿山》
  • 北大核心期刊(2011版)
  • 主管单位:中钢集团马鞍山矿山研究院有限公司 中国金属学会
  • 主办单位:中钢集团马鞍山矿山研究院 中国金属学会
  • 主编:王运敏
  • 地址:安徽省马鞍山经济技术开发区西塘路666号
  • 邮编:243000
  • 邮箱:jsksbjb@163.com
  • 电话:0555-24044796
  • 国际标准刊号:ISSN:1001-1250
  • 国内统一刊号:ISSN:34-1055/TD
  • 邮发代号:26-139
  • 获奖情况:
  • 国家二等奖,省、部二等奖,中国期刊方阵“双百”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22666