基于有源开关电容网络二阶系统最小建立时间(MST)理论和阶跃响应分析,提出了一种用于Folded-Cascode放大器的频率补偿新方法,即通过MOS电容引入时钟馈通以调整电路阻尼因子η,使其达到MST状态,从而实现快速建立.研究结果表明,补偿后放大器的建立时间缩短了22.7%;当负载电容从0.5变化至2.5pF,其建立时间从3.62ns近似线性地增长到4.46ns;将采用该补偿方法的放大器应用于可变增益(VGA)系统,当闭环增益变化时,仅需调整MOS电容值仍可实现对应状态下的快速建立.
Based on the minimum settling time (MST) theory and step-response analysis of the second order system in active switched capacitor (SC) networks, a novel clock feedthrough frequency compensation (CFFC) method for a folded-cascode OTA is proposed. The damping factor r/is adjusted by using MOS capacitors to introduce clock feedthrough so that the OTA can obtain the MST state and thus achieve fast settling. Research results indicate that the settling time of the compensated OTA is reduced by 22.7% ;as the capacitor load varies from 0.5 to 2.5pF,the improved settling time increases approximately linearly from 3.62 to 4.46ns: for VGA application, fast settling can also be achieved by modifying the MOS capacitor value accordingly when the closed loop gain of the compensated OTA varies.