研究下面带P拉普拉斯算子三点边值问题{^φp(u'(t)))'+f(t,u(t),u'(t))=0,t∈(0,1)u(0)=αu'(0,u(n)=u)(1)三个拟对称正解的存在性,其中α〉0,0〈η〈1,φp(s)=|s|^p-2s,通过应用Avery-Peterson不动点定理,我们得到上述边值问题具有拟对称正解的充分条件.
In this paper, we establish the existence of three pseudo-symmetric positive solutions for the three-point boundary value problem with one-dimensional p-Laplaiean {^φp(u'(t)))'+f(t,u(t),u'(t))=0,t∈(0,1)u(0)=αu'(0,u(n)=u)(1)where α〉 0, 0 〈η 〈 1, φ(S) = |s|^p-2s. By the fixed point theorem due to Avery and Peterson, we provide sumcient conditions for the existence of pseudo-symmetric positive solutions for the above boundary value problem.