结合圆柱体工件内部缺陷超声检测的实际情况,采用多元高斯声束模型仿真了检测时超声波的三维声场分布。针对水浸式超声检测原理,将超声传播的过程分解成探头发射、液体耦合介质中的传播、液固界面处的传播和固体工件中的传播等4个阶段,建立了传播过程中的声场模型并得出仿真结果.分析了三维坐标体系中不同方向的声场变化情况,结果表明采用多元高斯声束模型模拟三维声场的有效性和准确性,研究的结果对于实际圆柱体工件的内部缺陷检测提供理论依据。
In combination with the cylinder actual Defect detection requirements,this paper adopts the multi-Gaussian beam model to simulate 3D sound filed distribution of ultrasonic testing. According to theory of water immersion ultrasonic detection,the peocess have four phases what are ultrasonic probe emission,fluid coupling medium transmission,the spread of solid-liquid interface and solid workpiece,the model is established and the simulation results are obtained. The different directions of sound field changes in 3D coordinate is analyzed. The results show that multi-gaussian beam model is effective and accurate in simulating the 3D sound field.The result provides a theoretical basis for the defect detection of cylinder workpiece.