位置:成果数据库 > 期刊 > 期刊详情页
具Ⅱ型Holling功能性反应强耦合椭圆系统的共存问题
  • ISSN号:0583-1431
  • 期刊名称:《数学学报》
  • 时间:0
  • 分类:O175.26[理学—数学;理学—基础数学]
  • 作者机构:[1]扬州大学数学科学学院,扬州225002
  • 相关基金:国家自然科学基金资助项目(10171088)
作者: 周玲[1]
中文摘要:

本文研究带齐次Dirichlet边界条件的强耦合椭圆系统,首先证明了当食饵和捕食者的扩散率足够大,或者出生率足够小时,系统不存在共存现象,并给出半平凡解存在的充分条件.然后利用Schauder不动点定理,得到强耦合的椭圆问题至少有一个正解存在的充分条件.该条件说明只要捕食者的内部竞争强,物种的交叉扩散相对弱,或者捕获率足够小,物种的交叉扩散相对弱,强耦合系统就至少有一个正解存在.

英文摘要:

A strongly coupled elliptic system with homogeneous Dirichlet boundary conditions is considered. It is shown that there is no coexistence state if diffusion rates are strong, or if the intrinsic growth rates are slow. Making use of the Schauder fixed point theory, we derive some sufficient conditions to have a coexistence state for the strongly coupled elliptic problem. Moreover, our results reveal that this problem possesses at least one coexistence state if the intra-specific competition of predator is strong and cross-diffnsions are relatively weak, or if the capturing rate is slow and cross-diffusions are relatively weak.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院数学与系统科学研究院数学研究院
  • 主编:李炳仁
  • 地址:北京市海淀区中关村东路55号
  • 邮编:100080
  • 邮箱:Actamath@amss.ac.cn
  • 电话:010-62551910
  • 国际标准刊号:ISSN:0583-1431
  • 国内统一刊号:ISSN:11-2038/O1
  • 邮发代号:2-502
  • 获奖情况:
  • 1996年中科院优秀科技期刊二等奖,1997年全国优秀科技期刊二等奖,2000年中科院优秀科技期刊二等奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9981