用支持向量机和群智能优化方法进行煤制甲醇合成过程的数学建模及优化研究,探索甲醇合成过程中工艺参数与甲醇产率之间的机理性问题。本项目以甲醇合成数据中的组分含量、温度、压力、氢碳比、空速等过程工艺参数为输入,甲醇产率为输出,针对变量之间的时变性和非线性,研究具有在线学习能力的支持向量机动态建模方法;针对变量之间的强耦合性,研究基于支持向量机的规则抽取方法;最后结合动态模型和提取的规则,研究基于多目标粒子群的工艺参数优化方法,实现生产过程中对甲醇产率的预测、监测及参数优化。此研究对揭示甲醇合成生产规律、提高生产效率等方面有着重要的科学意义和推广价值,为化工过程的建模及优化提供了一条新途径, 同时也拓展了数据挖掘应用的新领域。
英文主题词methanol synthesis process;data noise reduction;incremental modeling,;rule extraction;swarm intelligence optimization