在电阻层析成像中,有限元网格节点编号对整体刚度矩阵的带宽具有重要决定性的作用,而整体刚度矩阵的带宽直接决定了数据的存储量以及求解方程组的计算量。为了提高电阻层析成像中有限元的计算效率,减少数据存储量,利用改进遗传算法,对电阻层析成像中两种典型拓扑结构的有限元模型节点编号进行优化。实验结果表明,与常用节点编号规则相比,利用改进遗传算法可得到更优的带宽值,从而节省了计算机的内存空间,提高了计算效率。
In electrical resistance tomography,node numbering of finite element mesh plays a decisive role in determining the bandwidth of the global stiffness matrices,while the memory capacity of the data and the computational complexity to solve the equations is determined by the bandwidth.In order to improve the efficiency of finite element computation in electrical resistance tomography,and reduce the amount of storage of computation data,the node numbering in finite element mesh is optimized by an improved genetic algorithm for two typical topology structures.Experimental results show that,compared with the usual node numbering rule,the bandwidth can be reduced by applying the improved genetic algorithm,so the memory of computer can be saved and the computer efficiency can be improved.