位置:成果数据库 > 期刊 > 期刊详情页
一类变量可分离支持向量分类机的研究与应用
  • ISSN号:0529-6579
  • 期刊名称:《中山大学学报:自然科学版》
  • 时间:0
  • 分类:O236[理学—运筹学与控制论;理学—数学]
  • 作者机构:[1]中山大学数学与计算科学学院,广东广州510275, [2]广东药学院数学系,广东广州510226
  • 相关基金:国家自然科学基金资助项目(10371135)
中文摘要:

针对传统SVC方法在样本容量大时存在训练时间过长、精度不高等不足,建立了一种变量可分离的支持向量分类模型DCSVC及算法,并应用于随机函数生成数据分类学习及戈尾属植物数据集分类预测中,从理论与实践上证明了DCSVC算法优于传统SVC算法(分类正确率较高而且训练时间较短).

英文摘要:

To solve the disadvantage of long training time and low accuracy of traditional SVC model with big study sample data, sets up a new kind of support vector classification machine model "DCSVC" whose variables can be separated. The IRIS standard test data set and random data set experiment demonstrates that the accuracy of DCSVC is higher than that of traditional support vector machine and the training time is lower.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中山大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:中山大学
  • 主编:王建华
  • 地址:广州市新港西路135号
  • 邮编:510275
  • 邮箱:xuebaozr@mail.sysn.edu.cn
  • 电话:020-84111990
  • 国际标准刊号:ISSN:0529-6579
  • 国内统一刊号:ISSN:44-1241/N
  • 邮发代号:46-15
  • 获奖情况:
  • 全国优秀高等学校自然科学学报及教育部优秀科技期...,广东省优秀科学技术期刊一等奖,《中文核心期刊要目总览》综合性科技类核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),英国农业与生物科学研究中心文摘,德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国动物学记录,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:18509