在Hilbert空间中研究平衡问题以及无穷个非扩张算子的公共不动点的迭代逼近性.将迭代算法{f(un,y)+〈Axn,y-un〉+1/rn〈y-un,un-xn〉≥0,任意y∈C xn+1=αnu+βnxn+γnTun,n≥1推广为{f(un,y)+〈Axn,y-un〉+1/rn〈y-un,un-xn〉≥0,任意y∈C xn+1=αnf(xn)+βnxn+γnWnun,n≥1.
In this paper, we introduce an iterative process which converges strongly to a common element of a set of common fixed points of infinite family of nonexpansive mappings and the solution set of equilibrium problem in Hilbert spaces , our results extend the iteration scheme {f(un,y)+〈Axn,y-un〉+1/rn〈y-un,un-xn〉≥0,arbitary y∈C xn+1=αnu+βnxn+γnTun,n≥1 {f(un,y)+〈Axn,y-un〉+1/rn〈y-un,un-xn〉≥0,arbitary y∈C xn+1=αnf(xn)+βnxn+γnWnun,n≥1.