在同类的压电的脱衣的平行裂缝的一个周期的数组的问题结合了到机能上地分级的压电的材料为不同类的连续统被调查。材料不同类沿着裂缝的方向作为在指数的功能形式的 shear 模量的空间变化被代表,这被假定。混合边界价值问题被使用 Fourier 变换归结为一个单个不可分的方程,并且单个不可分的方程被使用 Gauss-Chebyshev 集成技术数字地解决。数字结果被获得为材料不同类的不同的值作为裂缝频率的一个函数说明压力紧张因素的变化。
The problem of a periodic array of parallel cracks in a homogeneous piezoelectric strip bonded to a functionally graded piezoelectric material is investigated for inhomogeneous continuum. It is assumed that the material inhomogeneity is represented as the spatial variation of the shear modulus in the form of an exponential function along the direction of cracks. The mixed boundary value problem is reduced to a singular integral equation by applying the Fourier transform, and the singular integral equation is solved numerically by using the Gauss-Chebyshev integration technique. Numerical results are obtained to illustrate the variations of the stress intensity factors as a function of the crack periodicity for different values of the material inhomogeneity.