层次型路由算法是无线传感器网络研究的热点领域。针对传感器节点能量受限问题,提出一种基于小世界模型的无线传感器网络层次型路由算法(HASWNM)。通过添加高性能节点以及在簇头间添加捷径的方法,使得无线传感器网络(WSN)体现出小世界网络特性。由于能量消耗主要集中在数据发送阶段,因此该算法在簇间中继选择时考虑了簇头自身的能量问题。此外,根据簇头节点距离基站的位置远近,确定不同的自适应搜索区域。实验结果证明,当高性能节点个数为100时,网络中可以呈现出小世界特性。与CSWN、TSWN、DASM相比,该算法第一个节点的死亡轮数分别延迟了6%,6%,29%,每一轮网络中的平均能量消耗分别减少了5%,12%,17%。因此,该算法构造的无线传感器网络具有小世界特性,并且能量消耗较低。
Hierarchical routing algorithm is now a hotspot in the field of wireless sensor network. Aiming at the problem that the energy of sensor nodes are limited, a hierarchical routing algorithm for wireless sensor networks based on small world model (HASWNM) was proposed. The Wireless Sensor Network (WSN) could reflect characteristics of the small world by adding nodes with high performance as well as shortcuts among cluster heads. As the energy consumption was mainly concentrated in the data transmission phase, the energy of the cluster head was taken into account while choosing the relay node between clusters. Besides, the different adaptive search area was determined according to the distance between the cluster head and the base station. The experimental results showed that the network can show the characteristics of small world when the number of high-performance nodes reached 100, and compared to the algorithms of CSWN (topology Control based on Small World Network), TSWN (Tree-based Small World Network), DASM (Directed Angulation towards the Sink node Model), the number of death rounds of the first node was delayed by 6%,6%,29% separately, and the average energy consumption of the network per round was reduced by 5%,12%,17% respectively. Thus the wireless sensor network constructed by the proposed algorithm has the characteristics of small world and low energy consumption.