位置:成果数据库 > 期刊 > 期刊详情页
基于DBSCAN子空间匹配的蜂窝网室内指纹定位算法
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TN929.53[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:重庆邮电大学移动通信重点实验室,重庆400065
  • 相关基金:国家自然科学基金(61301126); 长江学者和创新团队发展计划(IRT1299); 重庆市基础与前沿研究计划(cstc2013jcyjA 40041,cstc2015jcyj BX0065); 重庆邮电大学青年科学研究项目(A2013-31)
中文摘要:

针对无线信道动态衰落特性引起的蜂窝网室内定位误差较大的问题,该文提出基于密度的空间聚类(Density Based Spatial Clustering of Applications with Noise,DBSCAN)子空间匹配算法,有效剔除大误差点,提高定位精度。首先通过划分信号空间,构建多个子空间,在子空间中利用加权K近邻匹配算法(Weighted K Nearest Neighbor,WKNN)估计出目标位置;然后利用DBSCAN对估计位置进行聚类以剔除异常点;最后结合概率模型确定最终估计位置。实验结果表明,基于DBSCAN的子空间匹配算法能有效剔除大误差点,提高蜂窝网室内定位系统的整体性能。

英文摘要:

For the sake of reducing the indoor localization errors caused by dynamic signal fading in cellular network, this paper propose a novel Density-Based Spatial Clustering of Applications with Noise (DBSCAN) based subspace matching algorithm for indoor localization, which can improve the localization accuracy by eliminating the location with large errors. Specifically, the signal space is firstly divided into several subspaces, where a position estimation can be obtained respectively using the Weighted K Nearest Neighbors (WKNN) approach. Then, DBSCAN is applied to the position coordinates obtained from each subspace which eliminates the outliers. Finally, the location is estimated based on probability analysis. Experimental results show that the proposed approach can improve the location accuracy by eliminating the location with large errors.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739