有限元素网孔的常规假设为常规一致元素 andnonconform-ing 元素两个都是有限元素近似的大多数分析的一个基本条件。这篇论文的目的是介绍处理一个四度的非一致的有限元素的近似的一条新奇途径因为第二在各向异性的网孔上订椭圆形的问题。没有在那里喉部的假设或伪制服假设的精力标准和 L2 标准的最佳的错误估计基于此处发现的这个元素的一些新特殊特征被获得。数字结果被给表明我们的理论分析的有效性。
Regular assumption of finite element meshes is a basic condition of most analysis of finite element approximations both for conventional conforming elements and nonconforming elements. The aim of this paper is to present a novel approach of dealing with the approximation of a four-degree nonconforming finite element for the second order elliptic problems on the anisotropic meshes. The optimal error estimates of energy norm and L^2-norm without the regular assumption or quasi-uniform assumption are obtained based on some new special features of this element discovered herein. Numerical results are given to demonstrate validity of our theoretical analysis.