位置:成果数据库 > 期刊 > 期刊详情页
基于类间散布矩阵的二维主分量分析
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京理工大学计算机系,南京210094, [2]山西财经大学信息与管理学院,太原030006
  • 相关基金:国家自然科学基金资助项目(60472060)
中文摘要:

主分量分析是一种线性特征抽取方法,被广泛地应用在人脸等图像识别领域。但传统的PCA都以总体散布矩阵作为产生矩阵,并且要将作为图像的矩阵转换为列向量进行计算。该文给出了一种利用图像矩阵直接计算的二维PCA,以类间散布矩阵的本征向量作为投影方向,取得了比利用总体散布矩阵更好的识别效果,并且特征抽取速度更快。在ORL和NUSTFDHⅡ标准人脸库上的实验验证了该方法的有效性。

英文摘要:

Principal component analysis (PCA) is an important method widely used in images data compression and feature extraction. But conventional PCA usually uses total scatter matrix as a generation matrix, and two-dimension (2D) image matrices must be transformed into vectors. This paper gives a 2D-PCA, which uses original image matrices to compute between-class covariance matrix and its eigenvectors are derived for images feature extraction. The experiments on ORL and NUSTFDB Ⅱ face-databases indicate that the recognition rates are higher than PCA and 2D-PCA using total scatter matrix, and the speed of feature extraction is faster.

同期刊论文项目
期刊论文 184 会议论文 10 获奖 6 著作 1
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139