位置:成果数据库 > 期刊 > 期刊详情页
不相关最佳鉴别矢量集的有效算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京理工大学计算机科学系,江苏南京210094, [2]淮阴师范学院数学系,江苏淮安223001
  • 相关基金:国家自然科学基金资助项目(60472060);江苏省自然科学基金资助项目(05KJD520036)
中文摘要:

线性鉴别分析中处理小样本问题的方法有两类:①在模式识别之前,通过降低模式样本特征向量的维数达到消除奇异性的目的;②发展算法获得低维鉴别特征。将这两种方法结合起来,解决了高维小样本情况下基于广义Fisher线性鉴别准则的不相关最优鉴别矢量集的求解问题,给出了抽取最优鉴别矢量的有效算法。

英文摘要:

Nowadays there are two kinds of methods for dealing with the problems of small sample size in linear discriminant analysis. One is that the aim of avoiding singularity is arrived by dimension reduction of feature vector of pattern samples before pattern recognition. The other is to develop an algorithm to gain the lower discriminant features. By combining the above two kinds of methods, the problem has been solved that how to gain the optimal set of uncorrelated discriminant vectors for small sample size problem based on the generalized Fisher' s linear discriminant criterion. An efficient algorithm has been presented in this paper.

同期刊论文项目
期刊论文 184 会议论文 10 获奖 6 著作 1
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049