位置:成果数据库 > 期刊 > 期刊详情页
一种组合类别信息的非负矩阵分解方法及其应用
  • ISSN号:1004-731X
  • 期刊名称:《系统仿真学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京林业大学信息科学技术学院,南京210037, [2]南京理工大学计算机科学与技术学院,南京210094
  • 相关基金:国家自然科学基金资助项目(60472060,60632050);江苏省高校自然科学基金项目(06KJD520085);南京林业大学人才基金资助项目(2002-10)
中文摘要:

基于非负矩阵分解理论,提出一种新的有监督的特征提取方法,它具有二个特点:一是在特征提取过程中它直接利用训练样本的类别信息,二是在计算上仍然采用与非负矩阵分解方法相同数学公式,因此这种新特征提取方法被称为组合类别信息的非负矩阵分解(CINMF)方法。另外,在分类时本文提出了基于两种特征融合的分类策略进一步提高CINMF方法的识别率。通过在YALE人脸库和ORL人脸库上进行实验,结果表明本文提出的新方法在识别率方面整体上好于原非负矩阵分解方法,甚至超过常用的主成分分析法(PCA)。

英文摘要:

A novel supervised feature extraction method based on non-negative matrix factorization (NMF) was proposed. The new method has two traits: one is to sufficiently utilize a given class label of training sample in feature extraction and the other is to still follow the same mathematical formulation as NMF, so the new feature extraction method is named class-information-incorporated non-negative matrix factorization (C1NMF). Besides, in order to further improve recognition rate, a new classification strategy was proposed based on fusion of two kinds of feature vector. The experimental results on YALE face database and ORL face database show that the new method is better than original NMF in terms of recognition rate, and even outperform PCA.

同期刊论文项目
期刊论文 184 会议论文 10 获奖 6 著作 1
同项目期刊论文
期刊信息
  • 《系统仿真学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:北京仿真中心 中国仿真学会
  • 主编:李伯虎
  • 地址:北京市海淀区永定路50号院
  • 邮编:100039
  • 邮箱:simu-xb@vip.sina.com
  • 电话:010-88527147
  • 国际标准刊号:ISSN:1004-731X
  • 国内统一刊号:ISSN:11-3092/V
  • 邮发代号:82-9
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:51729