位置:成果数据库 > 期刊 > 期刊详情页
基于核的Fisher极小鉴别分析及人脸识别
  • ISSN号:1004-731X
  • 期刊名称:《系统仿真学报》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京理工大学计算机科学与技术学院,江苏南京210094, [2]唐山学院网络教育中心,河北唐山063000
  • 相关基金:国家自然科学基金重点项目(60632050);国家自然科学基金项目(60503026,60472060)
中文摘要:

Fisher鉴别分析被公认为是特征抽取的有效方法之一,但由于其只能抽取线性特征,而对于实际应用中复杂的样本图像分布,抽取非线性鉴别特征显得十分必要。先前的基于核Fisher鉴别分析算法虽然解决了非线性特征抽取问题,但是其存在最终特征维数受类别数限制的问题。为了能够进一步提高特征提取效率,提出了一种基于核的Fisher极小鉴别分析方法,该方法使得最终特征维数不受类别数限制。在Yale和NUST603人脸库上进行了鉴别性能实验,实验结果验证了该方法的有效性。

英文摘要:

Linear (Fisher) discriminant analysis (LDA) is a well known and popular statistical method for feature extraction,but,due to its limitation of linearity,it fails to perform well for nonlinear problems in a lot of real-world applications,so it is necessary to extract nonlinear features. Though the conventional kernel Fisher discriminant analysis has overcome the nonlinear problems,the limitation of final eigenvectors’dimensions determined by class number still exists. To extract more effective classification information,a method of kernel-based Fisher minimum discriminant analysis was proposed. The proposed one overcomes the limitation of final eigenvectors’dimensions determined by class number. The results of experiments conducted on Yale and NUST603 face databases show the effectiveness of the proposed algorithm.

同期刊论文项目
期刊论文 184 会议论文 10 获奖 6 著作 1
同项目期刊论文
期刊信息
  • 《系统仿真学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:北京仿真中心 中国仿真学会
  • 主编:李伯虎
  • 地址:北京市海淀区永定路50号院
  • 邮编:100039
  • 邮箱:simu-xb@vip.sina.com
  • 电话:010-88527147
  • 国际标准刊号:ISSN:1004-731X
  • 国内统一刊号:ISSN:11-3092/V
  • 邮发代号:82-9
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:51729