进一步研究了模态R0代数的一些重要性质,证明了:当函数y=□x在R0单位区间[0,1]内部有n个间断点时,在R0单位区间上能使([0,1]R0,□)成为模态R0代数的模态算子□共有2n种;F是模态R0代数中的模态滤子当且仅当F≠,F是上集(即当a∈F,b≥a时,b∈F),且当a、b∈F时,□(a*b)∈F.并证明了任意一族模态滤子之交仍为模态滤子,所有素模态滤子之交为单点集{1}.
Some basic properties of modal R0-algebras are studied in detail.It is proved that if the function y=□x has n discontinuous points in the R0-type modal unit interval,then there are 2n kinds of modal operators □ making([0,1]R0,□)to be modal R0-algebras.It is clarified that F is a modal filter if and only if F≠Ф,F is an upper set(i.e.a∈F and b≥a imply b∈F),and □(ab)∈F for all a,b∈F.Moreover,it is proved that the intersection of a family of modal filters is still a modal filter and the intersection of all prim of modal filters equals to {1}.