探讨了逻辑度量空间的结构,证明了在经典逻辑度量空间上存在一种反射变换φ,且φ保持逻辑等价关系不变,并且是同态映射;φ自然导出Lindenbaum代数上的一个反射变换φ*,φ*是Lindenbaum代数上的自同构变换,并且是等距变换.研究了φ*的不动点性态,得到了不动点的一般形式,即[A]∨φ*([A])或[A]∧φ*([A])(A∈F(S)).最后指出当n>2时,对于n值G del逻辑系统,相应的逻辑度量空间不具有上述性质.
The construction of a logic metric space is studied in detail.It is proved that there exists a reflexive transformation φ on a classical logic metric space.The transformation φ is a homomorphic mapping and keeps the logic equivalence relation unchanged.And φ naturally induces a reflexive transformation φ* on the Lindenbaum algebra,which is an automorphic and isometric transformation of the Lindenbaum algebra.Moreover,the general forms of fixed points have been obtained by studying the features of fixed poin...