数据脑本体有重要意义,是脑信息加工处理的基础。传统的源文档选取研究只考虑概念的因素,不能满足系统化脑信息学研究的需要。因此,本文在数据脑本体的理论基础上,首先分析了数据脑本体所需的脑信息源知识具有的概念性、属性性、关系性的特点;然后,针对这些特点采用改进的VSM(vector space model)方法和特征相结合的方法计算文档权值;最后,通过使用与脑科学知识相关的真实文档进行实验,实验结果显示相关文档的概念、属性和关系权值以及每个文档的权值与专家判定结果基本一致,拟合相关系数达0.975346。
The document selection related to brain information based on the data-brain ontology not only has an important significance in the promotion of data-brain ontology,but also lays the foundation for knowledge integration. However,traditional research of document selection only focuses on the concept,and cannot meet the requirement of the systematic Brain Informatics study.This paper analyzes the characteristics of source knowledge firstly with concepts,attributes and relations.Then,the weight of documents by using the improved method of Vector Space Model is calculated.Finally,experimental results between the weight of each document and experts’ judgement are basically the same by using real documents associated with brain science.The correlation coefficient is 0.975 346.