粗糙集理论能有效地处理不精确、不一致、不完整等不完全数据信息,可以对数据信息进行分析和推理,发掘隐含知识,揭示潜在规律。属性约简是粗糙集理论的重要研究课题。在现实生活中,由于各种条件限制,信息的不完备现象广泛存在,限制了经典Rough集理论在一些实际问题中的应用。文中引入粗糙模糊度度量,定义了一种新的知识熵。在此基础上,提出了一种基于信息观下粗糙模糊度的不完备信息系统属性约简算法。通过仿真实验说明了该算法的有效性和较好的时间优越性。
Rough set theory can effectively deal with incomplete data which is imprecise or inconsistent.It can analyze the data to dig implicit information and reveal the potential law.In rough set theory,attribute reduction is an important research subject.The widespread presence of the incomplete information system limit the application of classical rough set theory.Introduces a new entropy based on the rough fuzzy metrics.On this basis,an attribute reduction algorithm based on rough fuzzy degree for incomplete information systems is proposed.The simulation experiment illustrates the effectiveness of algorithm and a better time for superiority.