为更精确地求解弹性地基薄板的动力响应,发展了一种分段时域自适应算法,通过变量在离散时段内的展开,将时空耦合的初边值问题转化为一系列递推的基于有限元(FEM)的空间问题求解,通过自适应计算保持稳定的计算精度。数值算例表明:本文解与解析解相比最大相对误差不超过3.59%;当步长较大时四阶Runge-Kutta法和Newmark法均失效,本文所提算法仍可得到满意的计算结果。