位置:成果数据库 > 期刊 > 期刊详情页
解三维摩擦接触问题的一个二阶锥线性互补法
  • ISSN号:0459-1879
  • 期刊名称:力学学报
  • 时间:0
  • 页码:869-877
  • 分类:O313.5[理学—一般力学与力学基础;理学—力学] O343.3[理学—固体力学;理学—力学]
  • 作者机构:[1]天津科技大学机械工程学院,天津300222, [2]华南理工大学应用数学系,广东广州510641, [3]大连理工大学工业装备结构分析国家重点实验室运载工程与力学学部,辽宁大连116023
  • 相关基金:国家自然科学基金(10902077,60675046,10721062)和国家重点基础研究专项基金(2010CB832704)资助项目.
  • 相关项目:非光滑力学问题的锥型互补法及其应用研究
中文摘要:

针对三维摩擦接触问题的求解,给出了一种基于参变量变分原理的二阶锥线性互补法。首先,基于三维Coulomb摩擦锥在数学表述上属于二阶锥的事实,利用二阶锥规划对偶理论,建立了三维Coulomb摩擦接触条件的参变量二阶锥线性互补模型,它是二维Coulomb摩擦接触条件参变量线性互补模型在三维情形下的自然推广;随后,利用参变量变分原理与有限元方法,建立了求解三维摩擦接触问题的二阶锥线性互补法。较之于将三维Coulomb摩擦锥进行显式线性化的线性互补法,该方法无需对三维Coulomb摩擦锥进行线性化,因而在保证精度的前提下所解问题的规模要小很多。最后通过算例展示了该方法的特点。

英文摘要:

Frictional contact problems frequently arise in various engineering applications, but their solutions, especially the solutions of three dimensional (3D) frictional contact problems, are challenging since the conditions for contact and friction are highly nonlinear and non-smooth. The 3D frictional contact problem is nonlinear and non-differentiable at least in three aspects: (1) The unilateral contact law, combining a geometric condition of impenetrability, a static condition of no-tension and an energy condition of complementarity, is represented by a multi-valued force-displacement relation. (2) The friction law, governed by a relation between reaction force and local relative velocity, is also multi-valued. (3) The Coulomb friction law in 3D space is expressed as a nonlinear inequality that is non-differentiable in the ordinary sense. In this paper, we propose a new linear second-order cone complementarity formulation for the numerical finite element analysis of 3D frictional contact problem by using the parametric variational principle. Specifically, we develop a regularization technique to resolve the multi-valued difficulty involved in the unilateral contact law, and utilize a second-order cone complementarity condition to handle the regularized Coulomb friction law in contact analysis. We reformulate the governing equations of the 3D frictional contact problem as a linear second-order cone complementarity problem (SOCCP) via the parametric variational principle and the finite element method. Compared with the linear complementarity formulation of 3D frictional contact problems, the proposal SOCCP formulation avoids the polyhedral approximation to the Coulomb friction cone so that the problem to be solved has much smaller size and the solution has better accuracy. A semismooth Newton method is used to solve the obtained linear SOCCP. Numerical examples are computed and the results confirm the effectiveness and robustness of the SOCCP formulation developed.

同期刊论文项目
期刊论文 307 会议论文 111 获奖 10 著作 3
同项目期刊论文
期刊信息
  • 《力学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国力学学会 中国科学院力学研究所
  • 主编:魏悦广
  • 地址:北京市海淀区北四环西路15号中科院力学所内《力学学报》
  • 邮编:100190
  • 邮箱:lxxb@cstam.org.cn
  • 电话:010-62536271
  • 国际标准刊号:ISSN:0459-1879
  • 国内统一刊号:ISSN:11-2062/O3
  • 邮发代号:2-814
  • 获奖情况:
  • 1992年首届自然科技期刊一等奖,1996年国家自然科技期刊二等奖,2000年首届国家期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:13332