鉴于常规卡尔曼滤波算法组合导航系统数据融合算法中,存在易于发散的缺陷,尝试将遗传优化人工神经网络引入组合导航系统中.针对传统遗传算法存在的易早熟、算法稳定性差、固定的交叉和变异概率影响收敛效果等缺点,采用浮点式编码方式,两两竞争的选择策略、引入突变操作、重新定义交叉算子和自适应的交叉变异算子等措施进行了遗传算法的改进.仿真结果表明,改进后的算法更为有效,并且精度与常规卡尔曼滤波算法相当.