mRNA3’端的多聚腺苷酸化是真核细胞内mRNA转录后处理的三个最主要步骤之一。对DNA序列上发生多聚腺苷酸化的位置即PolyA位点的识别,对于理解mRNA的形成机制以及进行基因结构预测具有重要作用。本研究利用机器学习方法对PolyA位点进行预测,其实现过程分为以下三个步骤:特征的生成、特征的筛选、特征的综合分析聚类。首先,我们采取统计k阶核苷酸频率的方法来生成初始的特征;然后,通过信息学知识来对特征进行筛选;最后,使用SVM(Support Vector Machines,支持向量机)的方法进行特征的综合分析,确定参数,建立预测模型。在独立的测试数据集上进行测试,当敏感度(Sn)固定为60%时,在内含子水平和外显子水平上的特异性(sP)分别为71.67%和80.77%,在内含子水平上的预测精度明显优于国际上的同类软件。
Polyadenylation (PolyA) occurs in mRNA 3'end is one of the three main steps of eukaryotic pre-mRNA processing. The prediction of polyadenylation sites in human DNA and mRNA sequences is very important for realizing the pre-mRNA processing and prediction of gene structure. This paper presents a machine learning method to predict polyadenylation signals (PASes) in human DNA and mRNA sequences. This method consists of three steps of feature manipulation: Generation, selection and integration of features. In the first step, new features are generated using k-gram nucleotide acid patterns. In the second step, a number of important features are selected by an entropy-based algorithm. In the third step, support vector machines are employed to recognize true PASes from a large number of candidates. At last, a mathematic model forms. When the sensitivity is 60%, the corresponding specificity is 71.67% on intron level, and 80.77% on exon level.