考虑了奇异Ф-Laplacian周期边值问题{(Ф(u'))'+g(u)=s+e(t),t∈[0,T],u(0)-u(T)=0=u'(0)-u'(T)解的存在性,其中Ф:(-a,a)→R是单调递增的同胚且Ф(0)=0,0〈a〈+∞g∈C(R,R),e∈C[0,T],s是一个参数。主要结果的证明基于紧集连通理论及Leray—Schauder度理论。
We consider the existence of solutions for singular Ф-Laplacian of periodic boundary value problems {(Ф(u'))'+g(u)=s+e(t),t∈[0,T],u(0)-u(T)=0=u'(0)-u'(T)where th :Ф:(-a,a)→R(0〈a〈+∞) is an increasing homeomorphism such that Ф ( 0 ) = 0, g ∈ C ( R, R), e ∈ C [ 0, T], and s is a parameter. The proof of the main result is based on the continuation theorem and Leray-Schauder degree arguments.