位置:成果数据库 > 期刊 > 期刊详情页
基于EMD与GA-SVM的轴承故障诊断
  • ISSN号:1001-9669
  • 期刊名称:《机械强度》
  • 时间:0
  • 分类:TH133.33[机械工程—机械制造及自动化]
  • 作者机构:[1]军械工程学院一系 军械工程学院四系
  • 相关基金:国家自然科学基金(50705097);; 河北省自然科学基金(E2007001048)资助~~
中文摘要:

特征提取与特征选择是实现轴承故障诊断的关键。针对特征提取,首先将轴承振动加速度信号进行经验模态分解(empirical mode decomposition,简称EMD),得到一组固有模态函数(intrinsic mode function,简称IMF),计算各IMF的能量和IMF矩阵的奇异值分布,采用Shannon熵、Renyi熵度量能量和奇异值分布,同时提取原信号的部分统计特征共同构成原始特征子集;针对特征选择,采用遗传算法(genetic algorithm,简称GA)和最小二乘支持向量机(least square supportvector machine,简称LS-SVM)的Wrapper方法选择最优特征子集。在实际轴承故障诊断中的应用,表明文中所提方法的有效性。

英文摘要:

Feature extraction and selection are the most important step for bearing diagnosis.A method based on the empirical mode decomposition(EMD) and GA-SVM(genetic algorithm-support vector machine) is proposed.Firstly, in order to extract the features from the signal,the bearing vibration signals are decomposed to several intrinsic mode functions(IMF).The energy of every IMF and the singular value of the IMF matrix were calculated as features.The Shannon and Renyi entropy of the energy and singular value distribu...

同期刊论文项目
同项目期刊论文
期刊信息
  • 《机械强度》
  • 中国科技核心期刊
  • 主管单位:中国机械工业联合会
  • 主办单位:中国机械工程学会 郑州机械研究所
  • 主编:王长路
  • 地址:郑州市嵩山南路81号
  • 邮编:450052
  • 邮箱:jxqd@chinajournal.net.cn
  • 电话:0371-67710821
  • 国际标准刊号:ISSN:1001-9669
  • 国内统一刊号:ISSN:41-1134/TH
  • 邮发代号:36-76
  • 获奖情况:
  • 2002年12月获河南省第五届优秀科技期刊二等奖,1999年6月获国家机械工业局机械行业优秀科技期刊...,1999年2月获河南省第三届优秀科技期刊二等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,美国应用力学评论,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11980