位置:成果数据库 > 期刊 > 期刊详情页
基于改进半监督模糊C-均值聚类的发动机磨损故障诊断
  • ISSN号:0577-6686
  • 期刊名称:《机械工程学报》
  • 时间:0
  • 分类:TH165[机械工程—机械制造及自动化] TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]军械工程学院一系,石家庄050003
  • 相关基金:国家自然科学基金(50705097); 清华大学摩擦学国家重点实验室开放基金(SKLTKF09B06)资助项目
中文摘要:

为解决在少量油液样本条件下发动机磨损故障诊断难的问题,提出一种改进半监督模糊C-均值聚类算法(Improved semi-supervised fuzzy c-means clustering algorithm,ISS-FCM)。定义一种优化的目标函数,将无标签样本与训练样本间的平均距离度量考虑在内并赋予其一定权值,以引导聚类过程。为避免随机初始化划分矩阵使聚类结果陷入局部极值,利用训练样本对划分矩阵进行初始化。由于原始油液数据的聚类趋势不明显,不能有效描述发动机的磨损状态,利用自回归(Autoregression,AR)模型从油液光谱数据中提取出残差方差特征。结合某型履带车辆发动机台架试验,利用所提ISS-FCM算法对油液原子发射光谱测量数据进行分析,成功诊断出该发动机的拉缸和烧瓦故障。试验结果证明该方法在发动机磨损故障诊断领域的有效性。

英文摘要:

A improved semi-supervised fuzzy c-means clustering algorithm(ISS-FCM) is proposed to diagnose engine wear faults with small oil samples.An optimized objective function,which is defined through introducing average distance measure between unlabeled samples and training samples with weighting values,is used to conduct the clustering process.To avoid local extrema originating from initialing partition matrix randomly,the training samples are utilized in partition matrix initialing work.By reason that engine wear condition can not be effectively characterized by original oil data with unobvious cluster trendency,Autoregression(AR) model is used to abstract the residual variance features from oil data.The atomic emission spectrometric oil data of engine bench test are analyzed with the proposed method.The cylinder scoring and bushing ablating faults are diagnosed successfully.Experimental results demonstrate the validity of the presented method in the field of engine wear fault diagnosis.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《机械工程学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:宋天虎
  • 地址:北京百万庄大街22号
  • 邮编:100037
  • 邮箱:bianbo@cjmenet.com
  • 电话:010-88379907
  • 国际标准刊号:ISSN:0577-6686
  • 国内统一刊号:ISSN:11-2187/TH
  • 邮发代号:2-362
  • 获奖情况:
  • 中国期刊奖,“中国期刊方阵”双高期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:58603