电驱动微纳米模塑技术较之常规压印光刻技术具有其独特的优势,其利用电场产生的Maxwell压强替代外部机械压力,实现对聚合物薄膜流变的有效驱动,可以避免压印光刻技术中机械压力引发的结构变形等问题,实现微纳米结构的保真复形。针对电驱动微纳米模塑技术中电场施加方式以及模具几何约束的差异,提出非接触式与接触式两种电驱动模塑成形方法,并采用理论分析、数值仿真以及试验等手段探究电场作用下聚合物的流变成形机理,分析电压、空气间隙和膜厚等工艺参数对复形模塑结构的影响,探讨非接触式与接触式两种电驱动微纳米结构成形方法的异同。研究结果表明,两种电驱动模塑技术都能有效避免常规压印光刻技术的不足之处,在无机械压力条件下实现微纳米结构的模板图案完整复型,但接触式电驱动微纳米模塑方式在图形复制精确性、成形效率和工艺可控性等方面更具优势,是一种具有广阔应用潜力的纳米结构图形化方法。
Electric field driven micro-/nano-molding utilizes Maxwell tensor rather than mechanical pressure to drive the polymer to flow and to realize the pattern transferring, which can avoid the loading force induced distortion in conventional imprint lithography and form uniform mi Two kinds of electric field driven micro-/nano-molding methods, contact case and non-contact case, divided according to the differences on the implement of the electric field and the constraint of the geometric template are proposed and researched. Based on the theoretical analysis, numerical simulation and experimental approach, forming mechanisms and critical process parameters of the electric field driven micro-/nano-molding methods are discussed, and the comparisons between the contact case and the non-contact one is performed. Research results indicate that two kind of electric field driven micro-/nano-molding methods can both avoid the disadvantages of the conventional imprint lithography and form micro-/nano-smactures identified with template without any mechanical pressure, however, the contact electric field driven micro-/nano-molding method is a better micro-/nano-fabrieation method from the viewpoint of the accuracy, efficiency and controllability.