基于观察员的柔韧的 H 无穷控制的问题被使用交换 Lyapunov 函数方法与变化时间的围住标准的不确定性为线性分离时间的交换系统的一个类处理。任何一个都没单个分系统被假定是要用体力地 H 无穷可解决。有斜块的形式的一个新奇交换 Lypunov 功能矩阵被设计在设计切换的法律克服困难。为柔韧的 H 无穷稳定性分析,二 linear-matrix-inequality-based 如果一些参数是 preselected,足够的条件被仅仅使用最小的区域功能策略导出。然后,柔韧的 H 无穷控制合成用切换的州的反馈被学习;基于观察员的切换的动态产量反馈。所有切换的法律积极地同时被设计。最后,一个模拟例子被给说明结果的有效性。
The problem of observer-based robust H-infinity control is addressed for a class of linear discrete-time switched systems with time-varying norm-bounded uncertainties by using switched Lyapunov function method. None of the individual subsystems is assumed to be robustly H-infinity solvable. A novel switched Lypunov function matrix with diagonal-block form is devised to overcome the difficulties in designing switching laws. For robust H-infinity stability analysis, two linear-matrix-inequality-based sufficient conditions are derived by only using the smallest region function strategy if some parameters are preselected. Then, the robust H-infinity control synthesis is studied using a switching state feedback and an observer-based switching dynamical output feedback. All the switching laws are simultaneously constructively designed. Finally, a simulation example is given to illustrate the validity of the results.